If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-4x^2-24x-24
We move all terms to the left:
0-(-4x^2-24x-24)=0
We add all the numbers together, and all the variables
-(-4x^2-24x-24)=0
We get rid of parentheses
4x^2+24x+24=0
a = 4; b = 24; c = +24;
Δ = b2-4ac
Δ = 242-4·4·24
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-8\sqrt{3}}{2*4}=\frac{-24-8\sqrt{3}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+8\sqrt{3}}{2*4}=\frac{-24+8\sqrt{3}}{8} $
| j+11-3= 2 | | 3=9^2x | | (2/3)^1-2x=(27/8)^-3 | | 18-x/4=54 | | q/3+3=7 | | (6x-7)^2=4 | | 1+4s=17 | | 1.8/4=m/10 | | 3-3-5x=-2 | | 16–f=3 | | -7-n=-10 | | 17=r/4+13 | | 7^x=58 | | 1/3(4x+5)=1/4(3x-7) | | j2= 3 | | 19x-36=6x+31 | | -6v+9=3v | | 4x^2-4*3^1/2*x-13=0 | | 5x^2+14x-40=0 | | 2/3+1/6q=5/9q+1/3 | | (x+7)(x-3)=(x+1)² | | (-4f+9)-(8f+9)=-12f | | 7x^2-14x+28=0 | | 7x^2+14x+28=0 | | 10v+0=10v+4v | | 5/8x1/3x3/5=G | | x+-2x=150+-2x | | 8+p=-1 | | 7/2+4(e+5)=205/2 | | (2w−9)+(−4w−5)=- | | 4-(6x-12)=10 | | W-5/w^2=1/20 |